skip to main content


Search for: All records

Creators/Authors contains: "Tu, Yingfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nanoparticle (NP) assembly has been extensively studied, and a library of NP superstructures has been synthesized. These intricate structures show unique collective optical, electronic, and magnetic properties. In this work, we report a bottom‐up approach for fabricating spherical gold nanoparticle (AuNP) assemblies that mimic colloidosomes. Co‐crystallization of lipoic acid‐end‐functionalized poly(ethylene oxide) (PEO) and AuNPs in solution via a self‐seeding method led to the formation of hollow spherical NP assemblies named nanoparticle crystalsomes (NPCs). Due to the spherical shape, the translational symmetry of PEO crystals is broken in NPCs, which can be attributed to the competition between NP close packing and polymer crystallization. This was confirmed by tuning the NPC morphology via varying the self‐seeding temperature, crystallization temperature, and PEO molecular weight. We envisage that this strategy paves the way to attaining exquisite morphological control of NP assemblies with broken translational symmetry.

     
    more » « less
  2. Abstract

    Nanoparticle (NP) assembly has been extensively studied, and a library of NP superstructures has been synthesized. These intricate structures show unique collective optical, electronic, and magnetic properties. In this work, we report a bottom‐up approach for fabricating spherical gold nanoparticle (AuNP) assemblies that mimic colloidosomes. Co‐crystallization of lipoic acid‐end‐functionalized poly(ethylene oxide) (PEO) and AuNPs in solution via a self‐seeding method led to the formation of hollow spherical NP assemblies named nanoparticle crystalsomes (NPCs). Due to the spherical shape, the translational symmetry of PEO crystals is broken in NPCs, which can be attributed to the competition between NP close packing and polymer crystallization. This was confirmed by tuning the NPC morphology via varying the self‐seeding temperature, crystallization temperature, and PEO molecular weight. We envisage that this strategy paves the way to attaining exquisite morphological control of NP assemblies with broken translational symmetry.

     
    more » « less
  3. Nanocomposite polymer electrolytes (CPEs) are promising materials for all-solid-state lithium metal batteries (LMBs) due to their enhanced ionic conductivities and stability to the lithium anode. MXenes are a new two-dimensional, 2D, family of early transition metal carbides and nitrides, which have a high aspect ratio and a hydrophilic surface. Herein, using a green, facile aqueous solution blending method, we uniformly dispersed small amounts of Ti 3 C 2 T x into a poly(ethylene oxide)/LiTFSI complex (PEO 20 -LiTFSI) to fabricate MXene-based CPEs (MCPEs). The addition of the 2D flakes to PEO simultaneously retards PEO crystallization and enhances its segmental motion. Compared to the 0D and 1D nanofillers, MXenes show higher efficiency in ionic conductivity enhancement and improvement in the performance of LMBs. The CPE with 3.6 wt% MXene shows the highest ionic conductivity at room temperature (2.2 × 10 −5 S m −1 at 28 °C). An LMB using MCPE with only 1.5 wt% MXene shows rate capability and stability comparable with that of the state-of-the-art CPELMBs. We attribute the excellent performance to the 2D geometry of the filler, the good dispersion of the flakes in the polymer matrix, and the functional group-rich surface. 
    more » « less